

INDIAN SCHOOL AL WADI AL KARIR

~	INDIAN SCHOOL AL WADI AL KADIK		
CLASS: XII	DEPARTMENT: SCIENCE 2024 -25 SUBJECT: PHYSICS	DATE: 25.10.2024	
WORKSHEET No: 8 WITH ANSWERS	Topic: RAY OPTICS AND OPTICAL INSTRUMENTS	NOTE: A4 FILE FORMAT	
CLASS & SEC:	NAME OF THE STUDENT:	ROLL NO:	

WITH ANSWERS	INSTRUMENTS	NOTE: A4 FILE FORMAT	
CLASS & SEC:	NAME OF THE STUDENT:	ROLL NO:	
Multiple choice questions:	I		
respectively. If the tube length most suitable weaving by rela (a) 250 (b)200 2. The minimum distance betw (a) f (b) 2f	(c) 150 (d) 125 ween an object and its real image formed by a (c) 3f (d) 4f	n obtained by the microscope for convex lens of focal length f is:	
following will be the same for (a) energy carried (c) frequency	the propagating in air is incident on the surfact the reflected and refracted rays? (b) speed (d) wavelength. P vertically splits into two identical plano-controls.		
part will be, (a) 2P (b) P/2	_	icure parts. The power of cuen	
5. A converging lens is used to opaque screen.(a) half the image will(c) intensity of image	o form an image on a screen. When the upper disappear. (b) incomplete image will be fewill decrease but complete image is formed. will increase but image is not distinct.	-	
6. In optical fibres, the refract (a) greater than that of (c) smaller than that of 7. Air bubble in water behave	ive index of the core is the cladding. (b) equal to that of the cladding the cladding. (d) independent of that of clade	ding.	
combined focal length is F. Co (a) $f_1 > f_2$ (b) $f_1 =$	`	lengths f_1 , and f_2 and their cave lens, if f_2	
(a) 40.4 cm (b) 75 cm 10. A metal coin is at bottom an observer looking from above (a) 1.5 cm (b) 6.75	of a beaker filled with a liquid of refractive invertee the surface of liquid, coin will appear at a d	m adex = $4/3$ to height of 6 cm. To lepth	
	al length of the eyepiece should be		

12. The refractive ind		(c) – 150 cm an equilateral prism is	(d) – 15 cm $\sqrt{3}$. What is the angle of minimum
deviation? (a) 45°	(b) 60°	(c) 37°	(d) 30°
(a) 43	(0) 00	(C) 31	(d) 30
		as a power of 2.5 D in	air. If it is placed in a liquid of refractive
index 2 then the new (a) -1.25 D	-	(c) 1.25 D	(d) 1.5 D
	* *	3 7	liquid of refractive index μ_2 . The lens will
act as transparent plan		, -	1
(a) $\mu_1 = \mu_2$	(b) $\mu_1 > \mu_2$	(c) $\mu_1 < \mu_2$	(d) $\mu_1 = 1/\mu_2$
			which of the following does not change?
	` '	(c) Speed 7 (b) 8 (a) 9 (c) 10	(d) Ampittude 0. (c), 11. (a), 12. (b), 13. (a), 14. (a), 15. (a
7 ms 1. (d), 2. (d), 3.	(c), (c) ,	7. (b), 6. (a), 7. (c), 1.	0. (c), 11. (a), 12. (b), 13. (a), 11. (a), 13. (a
Assertion and reason			
	A) and Reason (R) are	true and Reason (R) is	s the correct explanation of the Assertion
(A). (B) Roth Assertion (A)	(R) and Reason (R) are	true but Rescon (R) is	s not the correct explanation of the
Assertion (A).	A) and Reason (R) are	true, but Keason (K) is	s not the correct explanation of the
` /	rue, but Reason (R) is	false.	
	Calse and Reason (R) is		
1 Assertion (A): The	magnifying power of	a compound microsco	ana is nagativa
		a compound microsco t with respect to the ob-	-
(A) A	(B) B	(C) C	(D) D
• •	onvex lens, when imm	ersed in a liquid, disap	opears.
` '		ial of the lens and the	<u>.</u>
(A) A	(B) B	(C) C	(D) D
Ans; 1.C, 2. A			
Case-Study Based Qu	uestions:		
-			one or both surfaces being spherical. The
_	•		two surfaces and the refractive index of its
			er of a lens is reciprocal of its focal length. action is the algebraic sum of the powers of
the individual lenses.	are kept in contact, the	e power of the combin	lation is the argeorate sum of the powers of
	ens, with each face ha	ving same radius of cu	irvature R, is made of glass of refractive
index n. Its power is:			
$(A) \frac{2(n-1)}{R}$	(B) $\frac{(2n-1)}{R}$	$(C)\frac{(n-1)}{2R}$	(D) $\frac{(2n-1)}{2R}$
A			
	<u>-</u>		e radius of curvature, is cut into two equal
		e power of one part of	~
(A) 2P	(B) P	(C) 4P	$(D)\frac{p}{2}$
_	-	with each other as she	own in the figure. The power
of the combination w	III UC.		<u> </u>
$(A)^{\frac{P}{-}}$	(B) P	(C) 2P	$(D)^{\frac{p}{-}}$

(iv) (a) A double-convex lens of power P, with each face having same radius of curvature, is cut along its principal axis. The two parts are arranged as shown in the figure. The power of the combination will be:

- (A) 0
- (B) P
- (C) 2P
- (D) $\frac{P}{A}$

OR

(b) Two convex lenses of focal lengths 60 cm and 20 cm are held coaxially in contact with each other. The power of the combination is:

- (A) 6.6 D
- (C) $\frac{1}{15}$ D (D) $\frac{1}{80}$ D
- Ans: (i) (A) $\frac{2(n-1)}{R}$ (ii) (D) P/2 (iii) (B) P (iv) (a) (C) 2P OR

- (b) (A) 6.6 D

2. When a ray of light propagates from a denser medium to a rarer medium, it bends away from the normal. When the incident angle is increased, the refracted ray deviates more from the normal. For a particular angle of incidence in the denser medium, the refracted ray just grazes the interface of the two surfaces. This angle of incidence is called the critical angle for the pair of media involved.

- (i) For a ray incident at the critical angle, the angle of reflection is:
- (A) 0
- $(B) < 90^{\circ}$
- $(C) > 90^{\circ}$
- (D) 90°

(ii) A ray of light of wavelength 600 nm is incident in water (n = 4/3) on the water-air interface at an angle less than the critical angle. The wavelength associated with the refracted ray is:

- (A) 400 nm
- (B) 450 nm
- (C) 600 nm
- (D) 800 nm

(iii)

(a) The interface AB between the two media A and B is shown in the figure. In the denser medium A, the incident ray PQ makes an angle of 30 with the horizontal. The refracted ray is parallel to the interface. The refractive index of medium B w.r.t. medium A is:

- (A) $\sqrt{3}/2$
- (B) $\sqrt{5}/2$
- (C) $4/\sqrt{3}$
- (D) $2/\sqrt{3}$

(b) Two media A and B are separated by a plane boundary. The speed of light in medium A and B is 2 x 10⁸ m/s and 2.5 x 10⁸ m/s respectively. The critical angle for a ray of light going from medium A to medium B

- (A) $\sin^{-1}\left(\frac{1}{2}\right)$

- (B) $\sin^{-1}\left(\frac{4}{5}\right)$ (C) $\sin^{-1}\left(\frac{3}{5}\right)$ (D) $\sin^{-1}\left(\frac{2}{5}\right)$

(iv) The figure shows the path of a light ray through a triangular prism. In this phenomenon, the angle is given by:

- (A) $\sin^{-1}(\sqrt{n^2-1})$
- (B) $\sin^{-1}(n^2 1)$

- (C) $\sin^{-1}\left(\frac{1}{\sqrt{n^2-1}}\right)$ (D) $\sin^{-1}\left(\frac{1}{n^2-1}\right)$

Ans; - (i) (D) 6 (ii) (C) 3 (iii) (a) (C) 6 OR (b) sin⁻¹(0.225) (iv) (D) 10

2 marks questions.

1. Monochromatic light of frequency 5.0×10^{14} Hz passes from air into a medium of refractive index 1.5. Find the wavelength of the light (i) reflected, and (ii) refracted at the interface of the two media.

(i)

$$v = v \lambda$$

 $3 \times 10^8 = 5 \times 10^{14} \times \lambda$
 $\lambda = 600 \text{ nm or } 6 \times 10^{-7} \text{m}$
(ii)

$$\lambda_{medium} = \frac{\lambda_{air}}{\mu}$$

$$\lambda_{medium} = \frac{600 \text{ nm}}{1.5}$$
= 400 nm or $4 \times 10^{-7} \text{m}$

2. A plano-convex lens of focal length 16 cm is made of a material of refractive index 1.4. Calculate the radius of the curved surface of the lens.

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

$$\frac{1}{16} = (1.4 - 1) \left(\frac{1}{R} - \frac{1}{\infty} \right)$$

$$\frac{1}{16} = 0.4 \times \frac{1}{R}$$

$$R = 16 \times 0.4$$

$$R = 6.4 \text{ cm}$$

3. An object is placed 30 cm in front of a concave mirror of radius of curvature 40 cm. Find the (i) position of the image formed and (ii) magnification of the image.

(i)
$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$
 (ii) $m = -\frac{v}{u}$
 $\frac{1}{v} + \frac{1}{-30} = \frac{1}{-20}$ = $-(\frac{-60}{-30})$
On solving $v = -60$ cm

4. A convex lens (n = 1.52) has a focal length of 15.0 cm in air. Find its focal length when it is immersed in liquid of refractive index 1.65. What will be the nature of the lens?

$$\frac{1}{f_l} = \left(\frac{n_g}{n_l} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

$$\frac{f_l}{f_a} = \frac{\frac{1.52 - 1}{1}}{\frac{1.52 - 1.65}{1.65}}$$

$$= -6.6$$

$$f_l = -6.6 f_a$$

$$= -99cm$$

Nature of the lens: Diverging/ behaves like a concave lens.

5. The magnifying power of an astronomical telescope is 24. In normal adjustment, distance between its two lenses is 150 cm. Find the focal length of the objective lens.

Magnifying power = 24, Distance between lenses =150 cm
$$\frac{f_o}{f_e} = 24$$

$$f_o + f_e = 150 \text{ cm}$$

$$f_e = 6 \text{ cm}$$

$$f_o = 144 \text{ cm}$$

3 marks questions

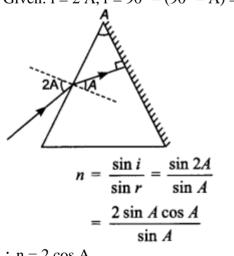
1. A ray of monochromatic light passes from medium (1) to medium (2). If the angle of incidence in medium (1) is θ and the corresponding angle of refraction in medium (2) is $\theta/2$, which of the two media is optically denser? Give reason.

Given:
$$i = \theta$$
, $r = \frac{\theta}{2}$

$$\therefore \frac{\sin i}{\sin r} = \frac{n_2}{n_1}$$
i.e. $\sin r < \sin i \implies n_2 > n_1$

Hence, 2nd medium is optically denser.

2. For the same value of angle of incidence, the angles of refraction in three media A, B and C are 15°, 25° and 35° respectively. In which medium would the velocity of light be minimum? Explanation:


$$\therefore \qquad n = \frac{\sin i}{\sin r} = \frac{c}{v}$$

Thus, the medium for which angle of refraction is of 15°, the speed of light is minimum

3. A ray of light incident on one of the faces of a glass prism of angle A has angle of incidence 2A. The refracted ray in the prism strikes the opposite face which is silvered, the reflected ray from it retracing its path. Trace the ray diagram and find the relation between the refractive index of the material of the prism and the angle of the prism.

Explanation:

Given:
$$i = 2 A$$
, $r = 90^{\circ} - (90^{\circ} - A) = A$

4. Does the magnifying power of a microscope depend on the colour of the light used? Justify your answer. Magnifying power of a microscope,

$$m = -\frac{L}{f_o} \left(1 + \frac{D}{f_e} \right)$$

Since the focal length of a convex lens depends on the refractive index, and refractive indices for different colours are different, so according to the lens maker's formula

$$\frac{1}{f}=(n-1)\left(\frac{1}{R_1}-\frac{1}{R_2}\right)$$

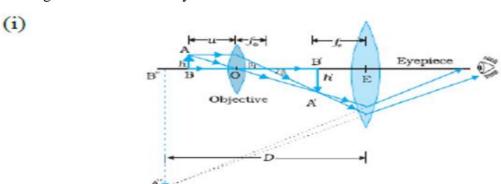
The magnifying power of a microscope depends on the colour of the light used

5. The refractive index of the material of a prism is $\sqrt{2}$. If the refracting angle of the prism is 60, find the (1) Angle of minimum deviation, and (2) Angle of incidence.

(1)
$$\mu = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin\frac{A}{2}}$$

$$\sqrt{2} = \frac{\sin\left(\frac{60 + \delta_m}{2}\right)}{\sin 30^{\circ}}$$

$$\Rightarrow \sin\left(\frac{60 + \delta_m}{2}\right) = \frac{1}{\sqrt{2}} = \sin 45^{\circ}$$


$$\frac{60 + \delta_m}{2} = 45^{\circ} \Rightarrow \delta_m = 30^{\circ}$$
(2)
$$i = \frac{A + \delta_m}{2}$$

$$\Rightarrow i = \frac{60 + 30}{2}$$

$$i = 45^{\circ}$$

5 marks questions

- 1.(i) Draw a labelled ray diagram of a compound microscope showing image formation at least distance of distinct vision. Derive an expression for its magnifying power.
- (ii) A telescope consists of two lenses of focal length 100 cm and 5 cm. Find the magnifying power when the final image is formed at infinity.

The magnification obtained by eye-piece lens $m_e = \left(1 + \frac{D}{f_e}\right)$

The magnification obtained by objective lens $m_0 = \frac{v_0}{-u_0}$

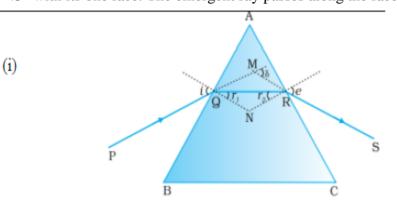
Hence the total magnifying power is $m = m_0 \times m_e$

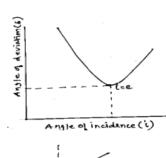
$$=\frac{v_0}{-u_0}\left(1+\frac{D}{f_0}\right)$$

$$(ii) \mathbf{m} = \frac{f_0}{f_e}$$

Identification of focal length of objective and eyepiece

$$f_0 = 100cm$$


$$f_e = 5cm$$


$$m = \left| \frac{100}{5} \right| = 20$$

- 2. (i) Trace the path of a ray of light showing refraction through a triangular prism and hence obtain an expression for angle of deviation (δ) in terms of A, i and e, where symbols have their usual meanings. Draw a graph showing the variation of angle of deviation with the angle of incidence.
- (ii) In the figure, a ray of light is incident on a transparent liquid contained in a thin glass box at an angle of 45° with its one face. The emergent ray passes along the face AB. Find the refractive index of the liquid.

Graph

(ii)

A G W

For quadrilateral AQNR,

$$\angle A + \angle QNR = 180^{\circ}$$
 --- (i)

For triangle QNR

$$r_1 + r_2 + \angle QNR = 180^{\circ}$$
 ---- (ii)

comparing equation (i) and (ii)

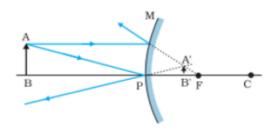
$$\mathbf{r}_1 + \mathbf{r}_2 = \mathbf{A}$$
 ----- (iii)

The angle of deviation

$$\delta = (i - r_1) + (e - r_2)$$
 ----- (iv)

from equation (iii) and (iv)

$$\delta = i + e - A$$


$$\frac{\sin 45^{\circ}}{\sin \theta} = \mu$$

$$\frac{1}{\sqrt{2}} = \mu \sin \theta$$
For second surface,
$$\frac{1 \cos \theta}{\sqrt{2} \sin \theta} = 1$$

$$tan \ \theta = \frac{1}{\sqrt{2}}$$

From the triangle GEF $sin \ \theta = \frac{1}{\sqrt{3}}$
 $\mu = \sqrt{\frac{3}{2}}$

- 3. (i) Draw a diagram for the formation of the image of an object by a convex mirror, hence obtain the mirror equation.
- (ii) Why are multi component lenses used for both objective and the high peaks in optical instruments?
- (iii) The magnification of a small object produced by a compound microscope is 200. The focal length of the eyepiece is 2 cm and the final image is formed at Infinity. Find the magnification produced by the objective.

i)

For paraxial rays MP can be considered to be a straight line perpendicular to CP, Therefore right angled triangles A'B'F and MPF are similar

$$\frac{BA}{PM} = \frac{BF}{FP}$$

Or
$$\frac{B'A'}{BA} = \frac{B'F}{FP}$$
 (:: PM = AB)

Since \angle APB = \angle A'PB', the right angled triangles A'PB' and ABP are also similar

Therefore,
$$\frac{B'A'}{BA} = \frac{B'P}{BP}$$
 (2)

Comparing eq (1) and (2), we get

$$\frac{B'F}{FP} = \frac{B'P}{BP}$$

$$\frac{PF - PB'}{FP} = \frac{B'P}{BP}$$

Using sign convention

$$PF = f$$
, $PB' = +v$, $PB = -u$

on solving
$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

- To improve image quality by minimizing various optical aberrations in lenses.
- iii) Magnification produced by compound microscope

$$m = m_o \times m_e$$

$$m_e = \frac{m}{m_o} = \frac{m}{m_o}$$

$$\mathbf{m_o} = \frac{\mathbf{m}}{\mathbf{m_e}} = \frac{\mathbf{m}}{\left|\frac{\mathbf{D}}{\mathbf{fe}}\right|}$$

$$m_o = \frac{200}{\frac{25}{2}} = 16$$

Prepared by	Checked by
Mr Randhir K Gupta	HoD Science